143 research outputs found

    Concentrations of procalcitonin and C-reactive protein, white blood cell count, and the immature-to-total neutrophil ratio in the blood of neonates with nosocomial infections: Gram-negative bacilli vs coagulase-negative staphylococci

    Get PDF
    This study was undertaken to determine whether concentrations of procalcitonin in the blood of neonates with nosocomial infections depend on the type of pathogen. Qualification for the study group was based on the clinical signs of infection. We found that infections with Gram-positive (chiefly coagulase-negative staphylococci) and Gram-negative bacteria are accompanied by elevated concentrations of procalcitonin. In the case of Gram-positive bacteria, other laboratory signs of infection studied by us (concentration of C-reactive protein, white blood cell count, immature-to-total neutrophil ratio) were not discriminatory, confirming the diagnostic usefulness of procalcitonin measurements in nosocomial infections of the neonate with Gram-negative or Gram-positive bacteria

    Simulation of Preterm Neonatal Brain Metabolism During Functional Neuronal Activation Using a Computational Model

    Full text link
    We present a computational model of metabolism in the preterm neonatal brain. The model has the capacity to mimic haemodynamic and metabolic changes during functional activation and simulate functional near-infrared spectroscopy (fNIRS) data. As an initial test of the model's efficacy, we simulate data obtained from published studies investigating functional activity in preterm neonates. In addition we simulated recently collected data from preterm neonates during visual activation. The model is well able to predict the haemodynamic and metabolic changes from these observations. In particular, we found that changes in cerebral blood flow and blood pressure may account for the observed variability of the magnitude and sign of stimulus-evoked haemodynamic changes reported in preterm infants

    T-cell subpopulations αÎČ and γΎ in cord blood of very preterm infants : The influence of intrauterine infection

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPreterm infants are very susceptible to infections. Immune response mechanisms in this group of patients and factors that influence cord blood mononuclear cell populations remain poorly understood and are considered insufficient. However, competent immune functions of the cord blood mononuclear cells are also described. The aim of this work was to evaluate the T-cell population (CD3+) with its subpopulations bearing T-cell receptor (TCR) αÎČ or TCR γΎ in the cord blood of preterm infants born before 32 weeks of gestation by mothers with or without an intrauterine infection. Being a pilot study, it also aimed at feasibility check and assessment of an expected effect size. The cord blood samples of 46 infants age were subjected to direct immunofluorescent staining with monoclonal antibodies and then analyzed by flow cytometry. The percentage of CD3+ cells in neonates born by mothers with diagnosis of intrauterine infection was significantly lower than in neonates born by mothers without infection (p = 0.005; Mann-Whitney U test). The number of cells did not differ between groups. Infection present in the mother did not have an influence on the TCR αÎČ or TCR γΎ subpopulations. Our study contributes to a better understanding of preterm infants' immune mechanisms, and sets the stage for further investigations.Peer reviewedFinal Published versio

    Phonons in a one-dimensional microfluidic crystal

    Full text link
    The development of a general theoretical framework for describing the behaviour of a crystal driven far from equilibrium has proved difficult1. Microfluidic crystals, formed by the introduction of droplets of immiscible fluid into a liquid-filled channel, provide a convenient means to explore and develop models to describe non-equilibrium dynamics2, 3, 4, 5, 6, 7, 8, 9, 10, 11. Owing to the fact that these systems operate at low Reynolds number (Re), in which viscous dissipation of energy dominates inertial effects, vibrations are expected to be over-damped and contribute little to their dynamics12, 13, 14. Against such expectations, we report the emergence of collective normal vibrational modes (equivalent to acoustic 'phonons') in a one-dimensional microfluidic crystal of water-in-oil droplets at Reapprox10-4. These phonons propagate at an ultra-low sound velocity of approx100 mum s-1 and frequencies of a few hertz, exhibit unusual dispersion relations markedly different to those of harmonic crystals, and give rise to a variety of crystal instabilities that could have implications for the design of commercial microfluidic systems. First-principles theory shows that these phonons are an outcome of the symmetry-breaking flow field that induces long-range inter-droplet interactions, similar in nature to those observed in many other systems including dusty plasma crystals15, 16, vortices in superconductors17, 18, active membranes19 and nucleoprotein filaments20.Comment: https://www.weizmann.ac.il/complex/tlusty/papers/NaturePhys2006.pd

    Evaluation of procalcitonin for diagnosis of neonatal sepsis of vertical transmission

    Get PDF
    BACKGROUND: The results of recent studies suggest the usefulness of PCT for early diagnosis of neonatal sepsis, with varying results. The aim of this prospective multicenter study was to determine the behavior of serum PCT concentrations in both uninfected and infected neonates, and to assess the value of this marker for diagnosis of neonatal sepsis of vertical transmission. METHODS: PCT was measured in 827 blood samples collected prospectively from 317 neonates admitted to 13 acute-care teaching hospitals in Spain over one year. Serum PCT concentrations were determined by a specific immunoluminometric assay. The diagnostic efficacy of PCT at birth and within 12–24 h and 36–48 h of life was evaluated calculating the sensitivity, specificity, and likelihood ratio of positive and negative results. RESULTS: 169 asymptomatic newborns and 148 symptomatic newborns (confirmed vertical sepsis: 31, vertical clinical sepsis: 38, non-infectious diseases: 79) were studied. In asymptomatic neonates, PCT values at 12–24 h were significantly higher than at birth and at 36–48 h of life. Resuscitation at birth and chorioamnionitis were independently associated to PCT values. Neonates with confirmed vertical sepsis showed significantly higher PCT values than those with clinical sepsis. PCT thresholds for the diagnosis of sepsis were 0.55 ng/mL at birth (sensitivity 75.4%, specificity 72.3%); 4.7 ng/mL within 12–24 h of life (sensitivity 73.8%, specificity 80.8%); and 1.7 ng/mL within 36–48 h of life (sensitivity 77.6%, specificity 79.2%). CONCLUSION: Serum PCT was moderately useful for the detection of sepsis of vertical transmission, and its reliability as a maker of bacterial infection requires specific cutoff values for each evaluation point over the first 48 h of life

    Pathoadaptive mutations of Escherichia coli K1 in experimental neonatal systemic infection

    Get PDF
    Although Escherichia coli K1 strains are benign commensals in adults, their acquisition at birth by the newborn may result in life-threatening systemic infections, most commonly sepsis and meningitis. Key features of these infections, including stable gastrointestinal (GI) colonization and age-dependent invasion of the bloodstream, can be replicated in the neonatal rat. We previously increased the capacity of a septicemia isolate of E. coli K1 to elicit systemic infection following colonization of the small intestine by serial passage through two-day-old (P2) rat pups. The passaged strain, A192PP (belonging to sequence type 95), induces lethal infection in all pups fed 2–6 x 106 CFU. Here we use whole-genome sequencing to identify mutations responsible for the threefold increase in lethality between the initial clinical isolate and the passaged derivative. Only four single nucleotide polymorphisms (SNPs), in genes (gloB, yjgV, tdcE) or promoters (thrA) involved in metabolic functions, were found: no changes were detected in genes encoding virulence determinants associated with the invasive potential of E. coli K1. The passaged strain differed in carbon source utilization in comparison to the clinical isolate, most notably its inability to metabolize glucose for growth. Deletion of each of the four genes from the E. coli A192PP chromosome altered the proteome, reduced the number of colonizing bacteria in the small intestine and increased the number of P2 survivors. This work indicates that changes in metabolic potential lead to increased colonization of the neonatal GI tract, increasing the potential for translocation across the GI epithelium into the systemic circulation

    Procalcitonin is not sufficiently reliable to be the sole marker of neonatal sepsis of nosocomial origin

    Get PDF
    BACKGROUND: It has recently been suggested that serum procalcitonin (PCT) is of value in the diagnosis of neonatal sepsis, with varying results. The aim of this prospective multicenter study was to assess the usefulness of PCT as a marker of neonatal sepsis of nosocomial origin. METHODS: One hundred infants aged between 4 and 28 days of life admitted to the Neonatology Services of 13 acute-care teaching hospitals in Spain over 1-year with clinical suspicion of neonatal sepsis of nosocomial origin were included in the study. Serum PCT concentrations were determined by a specific immunoluminometric assay. The reliability of PCT for the diagnosis of nosocomial neonatal sepsis at the time of suspicion of infection and at 12–24 h and 36–48 h after the onset of symptoms was calculated by receiver-operating characteristics (ROC) curves. The Youden's index (sensitivity + specificity - 1) was used for determination of optimal cutoff values of the diagnostic tests in the different postnatal periods. Sensitivity, specificity, and the likelihood ratio of a positive and negative result with the 95% confidence interval (CI) were calculated. RESULTS: The diagnosis of nosocomial sepsis was confirmed in 61 neonates. Serum PCT concentrations were significantly higher at initial suspicion and at 12–24 h and 36–48 h after the onset of symptoms in neonates with confirmed sepsis than in neonates with clinically suspected but not confirmed sepsis. Optimal PCT thresholds according to ROC curves were 0.59 ng/mL at the time of suspicion of sepsis (sensitivity 81.4%, specificity 80.6%); 1.34 ng/mL within 12–24 h of birth (sensitivity 73.7%, specificity 80.6%), and 0.69 ng/mL within 36–48 h of birth (sensitivity 86.5%, specificity 72.7%). CONCLUSION: Serum PCT concentrations showed a moderate diagnostic reliability for the detection of nosocomial neonatal sepsis from the time of suspicion of infection. PCT is not sufficiently reliable to be the sole marker of sepsis, but would be useful as part of a full sepsis evaluation
    • 

    corecore